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Abstract. We have performedab initio calculations of the electronic structure and exchange
couplings in the layered vanadates CaV2O5 and MgV2O5. On the basis of our results we provide
a possible explanation of the unusual magnetic properties of these materials, in particular the large
difference in spin gap between CaV2O5 and MgV2O5.

1. Introduction

Spin-1/2 ladder models can describe the magnetic behaviour of a variety of quasi-one-
dimensional systems [1]. Examples include the cuprate materials SrCu2O3 [2], LaCuO2.5 [3],
and (Sr, Ca)14Cu24O41 [4]. Spin excitations in the isolated ladders have a finite energy gap,
which makes them prototype spin liquids. This is of interest in relation to high-temperature
superconductivity, since upon doping they become resonating-valence-bond liquids, with a
spin-excitation gap and dominant quasi-long-range pairing correlations [1].

Two more examples of the spin-1/2 ladder systems are the layered vanadate compounds
CaV2O5 and MgV2O5. Although CaV2O5 and MgV2O5 have nearly identical vanadium–
oxygen planes, their magnetic properties are strikingly different. CaV2O5 has a large spin gap
of about 600 K [5], while the spin gap in MgV2O5 is very small—only about 20 K [6]. In
contrast to the case for the planar cuprates, where a hole in the Cux2 − y2 orbitals results in
a strong antiferromagnetic exchange coupling for the 180◦ bonds and a weak ferromagnetic
one for the 90◦ bonds, the exchange interactions in these vanadates can be more complicated,
as shown in figure 1. Even the signs of the many exchange couplings are not obvious for
these materials. So one has to resort toab initio numerical calculations to get information
about the relative as well as the absolute values of the exchange couplings in these systems.
The determination of the exchange couplings is crucial to the understanding of the markedly
different spin-gap behaviour in these compounds.

In this paper, we shall report on theab initio calculation of the exchange couplings using
the LDA +U method and discover that they are indeed different in these two compounds,
consistent with their magnetic properties. As the various exchange couplings are related to
the bare hopping matrix elements, we shall extract them using a recently developed systematic
downfolding scheme [7]. The advantage of the downfolding method is that only the important
orbitals referred to as the active channels are retained in the basis and the rest are downfolded,
thereby providing a single- or few-band tight-binding model capable of reproducing the details
of the LDA bands close to a prescribed energy, which is usually the Fermi energy. We shall
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Figure 1. Various magnetic interactions in Ca(Mg)V2O5 compounds. Two nearest vanadium
ladders with differentz-coordinates are shown in different shades.J1, the exchange interaction
between nearest V atoms, is ferromagnetic for CaV2O5 and antiferromagnetic for MgV2O5. J2
andJ3 are respectively the antiferromagnetic exchange interactions along the rung and leg of the
ladder.J4 is the antiferromagnetic exchange interaction between the V atoms along the diagonal
of the ladder. The magnetic structure used in the calculations is marked with up-pointing and
down-pointing arrows. Half of the exchange interactionsJ1 and all of exchange interactionsJ4
are frustrated in this magnetic structure.

use such few-band models to extract the various hopping matrix elements. This will form a
basis for understanding the widely different spin-gap behaviours in CaV2O5 and MgV2O5.

The remainder of the paper is organized as follows. In section 2 we shall briefly recapitulate
the crystal structure of CaV2O5 and MgV2O5. In section 3 we shall present our LDA +U
calculations for the various exchange couplings and compare them with available experimental
results. Section 4 will be devoted to electronic structure calculations based on the TB-LMTO
method [8], followed by the use of the downfolding method to extract the various hopping
matrix elements, in order to explain the different exchange couplings in these materials. Finally,
the conclusions are given in section 5.

2. Structure

The main building blocks of the crystal structures of Ca(Mg)V2O5 compounds are the V ions,
each roughly in the centre of a pyramid of oxygen ions, as can be seen in figure 2. The crystal
structure of CaV2O5 is primitive orthorhombic with space groupPmmn and lattice constants
a = 11.35 Å,b = 3.60 Å, andc = 4.89 Å. As shown in figure 2 (left), the structure is formed
by a linkage of VO5 pyramids having apex oxygens in the direction of thec-axis. Oxygen edge-
and corner-shared zigzag V chains are formed along theb-axis, where the nearest-neighbour
V–V distance is 3.03 Å. Along thea-axis, these chains are linked by sharing corners with the
V–V distance of 3.49 Å. This forms a quasi-two-dimensional ladder layer in theab-plane with
the leg along the zigzag V chains (i.e. alongb) while the rung is in the perpendicular direction
(i.e. alonga). The Ca atoms are located between the layers and are each surrounded by eight
O atoms.

The crystal structure of MgV2O5 is base-centred orthorhombic with space groupCmcm;
and lattice constantsa = 11.02 Å, b = 3.69 Å, andc = 9.97 Å. Again, the structure can be
described as a linkage of VO5 pyramids having apex oxygens in the direction of thec-axis, as
can be seen in figure 2 (right). The V zigzag chains extend along thea-axis by sharing edges
and corners of the pyramids, and the nearest-neighbour V–V distance is 2.98 Å. They are also
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Figure 2. On the left the crystal structure of CaV2O5 and on the right the crystal structure of
MgV2O5. Ca and Mg atoms are not shown; large balls represent V atoms and small balls represent
O atoms. In each figure the oxygen atoms constitute a pyramid; these pyramids are linked by edge
and corner sharing as described in the text.

linked by sharing corners along theb-axis, with the V–V distance of 3.37 Å, which again leads
to quasi-two-dimensional ladder layers in theab-plane. However, in contrast to the case for
CaV2O5, these layers stack alternately with the separation ofc/2, and the Mg atoms are located
between the layers and are each surrounded by six oxygen atoms. As a consequence, there is
a puckering of the V2O5 layers to accommodate Mg ions in the tetrahedral coordination.

All the structural data that we have discussed above are summarized in table 1 and indicated
in figure 3. It should be noted that as a consequence of the puckering of the V2O5 layers the
tilting angle of the corner-sharing pyramidsα (see figure 3) is appreciably smaller in MgV2O5

in comparison to CaV2O5.

Table 1. Structural data for CaV2O5 and MgV2O5 compounds. The lattice constants (in Å) are
a along the rung of the ladder,b along the leg, andc in the vertical direction. The distances (in
Å) between nearest V ions between ladders, along the leg, along the rung, and along the diagonal
are denoted asdnn, dleg , drung , andddiag , respectively. The angleα (figure 3) is the V–O–V angle
where the oxygen atom is placed between two vanadium atoms forming the rung. The angleβ is
the O–V–O angle where one oxygen is rung oxygen and the other is apical oxygen. Finally, the
angleγ is the O–V–O angle with both the oxygen atoms in the leg direction. All angle values are
listed in degrees.

Characteristic CaV2O5 MgV2O5

a, b, c 11.35, 3.60, 4.89 11.02, 3.69, 9.97
dnn, drung, dleg (=b), ddiag 3.03, 3.49, 3.60, 5.02 2.98, 3.57, 3.69, 5.00
α, β, γ 132.91, 102.94, 135.29 117.57, 109.23, 141.15

3. The LDA + U and exchange couplings

The LDA+U method has been shown to give good results for insulating transition metal oxides
with a partially filled d shell [9]. The exchange interaction parameters can be calculated using
a procedure based on the Green-function method, developed by Lichtensteinet al [11, 12].
This method has been successfully applied to calculate the exchange couplings in KCuF3 [12]
and in layered cuprates [13].
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Figure 3. A pair of corner-sharing VO5 pyramids. The various angles indicated in the figure are
quoted in table 1.

The LDA +U method [9, 10] is the local density approximation (LDA) modified by a
potential correction restoring a proper description of the Coulomb interaction between the
localized d electrons of transition metal ions. This is written in the form of a projection
operator:

Ĥ = ĤLSDA +
∑
mm′
|inlmσ 〉V σmm′ 〈inlm′σ | (1)

where

V σmm′ =
∑
{m}
{Um,m′′m′,m′′′n−σm′′m′′′ + (Um,m′′m′,m′′′ − Um,m′′m′′′,m′)nσm′′m′′′ }

− U
(
N − 1

2

)
+ J

(
Nσ − 1

2

)
where|inlmσ 〉 (i denotes the site,n the main quantum number,l the orbital quantum number,
m the magnetic number, andσ the spin index) are d orbitals of transition metal ions. The
density matrix is defined by

nσmm′ = −
1

π

∫ EF

ImGσ
inlm,inlm′(E) dE

whereGσ
inlm,inlm′(E) = 〈inlmσ |(E − Ĥ )−1|inlm′σ 〉 are the elements of the Green-function

matrix,Nσ = Tr(nσmm′), andN = N↑ +N↓. U andJ are the screened Coulomb and exchange
parameters.Umm′m′′m′′′ is the screened Coulomb interaction among thenl-electrons, which can
be expressed via integrals over complex spherical harmonics and the parametersU , J . For the
Ca(Mg)V2O5 compounds the values of these parameters were calculated to beU = 3.6 eV and
J = 0.88 eV via the so-called ‘supercell’ procedure [14] (in the ‘supercell’ calculation only
thexy-orbitals were considered to be localized so that all other d orbitals could contribute to
the screening). The calculation scheme was realized in the framework of the linear muffin-tin
orbital (LMTO) method [15] based on the Stuttgart TBLMTO-47 computer code.

On the basis of the Green-function method, the inter-site exchange couplings can be
derived as the second derivatives of the ground-state energy with respect to the magnetic
moment rotation angle [11,12]:

Jij =
∑
{m}
I imm′χ

ij

mm′m′′m′′′I
j

m′′m′′′
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where the spin-dependent potentialsI are expressed in terms of the potentials of equation (1):

I imm′ = V i↑mm′ − V i↓mm′ .
The effective inter-sublattice susceptibilities are defined in terms of the LDA +U

eigenfunctionsψ as

χ
ij

mm′m′′m′′′ =
∑
knn′

nnk↑ − nn′k↓
εnk↑ − εn′k↓ ψ

ilm∗
nk↑ ψ

jlm′′
nk↑ ψ

ilm′
n′k↓ψ

jlm′′′∗
n′k↓ .

The LDA+U method is the analogue of the Hartree–Fock (mean-field) approximation for
a degenerate Hubbard model [9]. While in the multi-orbital case a mean-field approximation
gives reasonably good estimates for the total energy, for the non-degenerate Hubbard model
it is known to underestimate the triplet–singlet energy difference (and thus the value of the
effective exchange couplingJij ) by a factor of two for a two-site problem (EHF = 2t2/U and
Eexact = 4t2/U , wheret � U is the inter-site hopping parameter).

As we discussed in section 2 the main building blocks of the crystal structures of the
Ca(Mg)V2O5 compounds are the V ions, each roughly at the centre of a pyramid of oxygen
ions. The relevant point group symmetry is C4v. The five d orbitals of the vanadium ion
transform according to the following irreducible representations: 3z2− r2 (A1), x2− y2 (B1),
xy (B2), and(xz, yz) (E). The lowest-energy orbital is the V 3d orbital ofxy-symmetry (using
a convention where the axes of the coordinate system are directed towards the oxygen ions),
which is the orbital whose lobes point in the directions where the overlap with the oxygen is
the smallest, as can be seen in figure 4.

Figure 4. The angular distribution of the V d-electron spin density for two V atoms belonging to
the rung. Oxygen pyramids enclosing the V atoms are also shown in the figure.

Due to the crystal-field splitting, the degeneracy of the V 3d shell is lifted and the single
d electron of the V4+ ion occupies thisxy-orbital, which reminds us of the cuprates, with a
single hole in thex2− y2 orbital. The important difference is that while in cuprates all copper
atoms are in the same(x, y) plane as thex2− y2 orbital, in these vanadates the vertices of the
pyramids point up and down alternately with respect to the basal plane. Thus the V ions at
their centres are correspondingly above and below the central plane, as can be seen in figure 2.
As thexy-orbitals are parallel to this plane, the overlaps (and hence the exchange couplings)
are expected to be stronger for vanadium ions situated on the same side of the ladder plane. We
will show that this is indeed the case. In addition to this alternation, a tilting of the pyramids
is present in the crystal structure of these compounds, which we shall see seriously influences
the interactions.

Another important difference from the cuprates is that thexy-orbital has aπ -overlap
with the in-plane oxygen atoms, in contrast to a much strongerσ -overlap in the case of Cu2+.
Consequently, one can expect much weaker exchange interaction in vanadates as compared to
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cuprates. However, it is surprising that the spin gap in CaV2O5 (616 K [5]) is larger than the
typical values for the similar cuprate ladders (≈460 K [2]).

So in the problem under consideration there are two types of contribution to the exchange
interaction parametersJij . The first one is due to thexy− xy orbital hopping, and as only this
orbital is half-filled this contribution directly corresponds to the non-degenerate Hubbard model
and its value must be multiplied by a factor of two to correct the Hartree–Fock value. Other
contributions are due to the hoppings to all other orbitals, and as the mean-field approximation
is much better for the multi-orbital model this part can be used without modification.

As mentioned earlier, the strongest interaction must be between V atoms which are situated
on the same side of the plane (above or below) (see figure 1). These atoms form ladders with
interactions along the rung and the leg of the ladder denoted asJ2 andJ3 respectively and the
interaction between the ladders denoted asJ1 (the notation is chosen to reflect the inter-atomic
distances; the shortest one is between the atoms on different sides of the plane).

Our calculated values of the exchange couplings are presented in table 2. It can be
immediately seen that the strongest interactions are indeed between atoms on the same side of
the plane (the ladder exchangesJ2,J3). There is very strong anisotropy between the exchange
interactions along the rung (J2 = 608 K) and the leg (J3 = 122 K) for CaV2O5. However,
for MgV2O5 the rung (J2= 92 K) and the leg (J3= 144 K) exchange interaction parameters
are comparable in size.

Table 2. Calculated exchange coupling parameters (in K). The minus sign indicates ferromagnetic
exchange.

CaV2O5 MgV2O5

J1 −28 60
J2 608 92
J3 122 144
J4 20 19

Our results suggest that CaV2O5 is a system of dimers weakly coupled along the rung of
the ladder with a very strong interaction inside the dimer. The analysis [16] based on fitting
the results of model calculations to the experimental susceptibility measurements for CaV2O5

confirms the coupled-dimer picture, and one of the sets of parameters obtained (J2= 665 K,
J3= 135 K,J1= −25 K) is very close to ourab initio-calculated parameter values. However,
for MgV2O5 our calculations suggestJ2/J1= 1.53 andJ3/J1= 2.40 which puts MgV2O5

outside the scope of the ladder limit, consistent with the helical ordered gapless phase according
to the phase diagram obtained by the Schwinger-boson mean-field theory [17]. Recently [18]
the exchange parameters for CaV2O5 and MgV2O5 obtained in the LDA +U method were
used for calculations of the uniform susceptibility of the Heisenberg model by the quantum
Monte Carlo method. The results agree very well with the experimental measurements, and
particularly good agreement has been found for CaV2O5.

4. LDA band structures and hopping integrals

In this section, we shall investigate the origin of the strong anisotropy of the rung and leg
exchange interactions in CaV2O5 and its absence in MgV2O5 using LDA band-structure
calculations. We shall use a systematic downfolding scheme to obtain an effective single-
band (or few-band) model Hamiltonian capable of reproducing the details of the LDA bands
close to the Fermi level. We shall extract the various hopping integrals which in turn could be
related to the exchange interactions that we calculated in the preceding section.
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Figure 5. Top left: TBLMTO-ASA energy bands; top right: the density of states; bottom left: the
xy-orbital-projected band structure; and bottom right: the band structure of the effective four-band
model for CaV2O5.

Top left and top right in figure 5 we show the energy bands and density of states (DOS)
respectively for CaV2O5. The bands are plotted along the various high-symmetry lines [19] of
the Brillouin zone corresponding to the primitive orthorhombic lattice. Similarly, top left and
top right in figure 6 we show the energy bands and density of states respectively for MgV2O5.
The bands are now plotted along the various directions of the Brillouin zone corresponding to
a base-centred orthorhombic lattice. All the energies in the figures are measured with respect
to the Fermi levels of the respective compounds. In both compounds the bands below−3 eV
have predominantly oxygen 2p character and are separated from the V d complex by a gap.
From−1 eV to 3 eV the bands with V 3d character are spread. Bottom left in figure 5 and
figure 6 we show the band structure of CaV2O5 and MgV2O5 respectively but projecting out
the Vxy-orbital character, so that the fatness in each figure is proportional to the character of
the Vxy-orbital (wherex runs along the rung andy runs along the leg of the two-dimensional
ladder system) in the wavefunction. The orbital analysis of the bands or the so-calledfat
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Figure 6. Top left: TBLMTO-ASA energy bands; top right: the density of states; bottom left: the
xy-orbital-projected band structure; and bottom right: the band structure of the effective four-band
model for MgV2O5.

bandsconfirms that the four lowest bands of the V 3d manifold are predominantly formed by
V xy-orbitals, consistently with the crystal-field arguments presented in the previous section.
The crystal-field splitting between thexy-orbital and other 3d orbitals is so strong that in the
LDA band structure, particularly for MgV2O5, thexy-bands are separated from the rest of the
V 3d bands by a small energy gap as can be seen top right in figure 5. With one subset of
energy bands so well separated from the rest, one can hope that a tight-binding model with a
singlexy-orbital per V site (i.e. a four-band model, because there are four V atoms in the unit
cell) will provide a good approximation to the full band structure close to the Fermi level.

In order to achieve this, the third-generation TB-LMTO downfolding method [7] has been
employed to obtain a four-band effective V–V model. The crucial difference between the
traditional LMTO method and the improved third-generation TB-LMTO method lies in the
description of the interstitial. In the traditional LMTO method, the energy-independent basis
set was constructed in such a way that it was correct to first order within the MT spheres and to
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zeroth order in the interstitial. In order to remedy this inconsistency one has to resort to atomic
sphere approximation (ASA), so one replaces the MT spheres by overlapping space-filling
spheres. In contrast, in the new version, the energy dependence of the interstitial is treated
on an equal footing with the MT spheres, so the single-particle energiesεi obtained from the
Hamiltonian and overlap matrices in the new basis set are energetically more accurate. The
error in the single-particle energies in the new method is proportional to(εi − εν)4 (whereεν
is the energy of linearization), compared to single-particle energy errors of order(εi − εν)2
in previous versions. This in turn leads to a more compact and accurate formalism which
makes it possible to extract an orthogonal tight-binding Hamiltonian even in the presence of
downfolding, and also includes the non-ASA correction, i.e. the combined correction.

The energy bands obtained from the effective four-band V–V model are shown bottom
right in figure 5 and figure 6 respectively for CaV2O5 and MgV2O5. It can be seen that the
agreement with the LDA bands shown top left in figure 5 and figure 6 is remarkable. At this
point it may be remarked that the downfolded orbitals are not thrown away but are included
in the tails of the active LMTOs which are retained in the basis, i.e. in the tails of the Vxy

orbitals. In contrast to the fitting procedure often used to obtain tight-binding Hamiltonians,
the present method is deterministic and is free from adjustable parameters, and also provides
information about the wavefunctions. The Fourier transform of the downfolded Hamiltonian
H(k)→ H(R) gives the effective hopping parameters for both compounds. Such an effective
Hamiltonian is long ranged and has been called the physical Hamiltonian. We list in table 3
all the hopping integrals which are relevant to understanding the various exchange couplings
presented in section 3. It can be seen from table 3 that, analogously to the exchange couplings,
the rung and leg hoppings of CaV2O5 are highly anisotropic while all the hoppings are of
comparable strength in MgV2O5.

Table 3. Calculated hopping parameters in an effective four-band V–V model (in eV). The notation
for the hopping parameters is the same as that for the exchange interactions.

CaV2O5 MgV2O5

t1 0.076 0.128
t2 0.252 0.114
t3 0.101 0.109
t4 0.056 0.069

The exchange interaction parameter for the Hubbard model with strong Coulomb
interaction can be estimated asJ = 4t2/U , where t is the hopping parameter andU is
the Coulomb interaction. For CaV2O5 the hopping along the rung of the ladder is 0.252 eV
andU = 3.6 eV, which givesJ = 816 K (our LDA +U calculation givesJ = 608 K).
The ratio of the rung and leg exchange parameters (J2/J3) is equal to 4.98 while the ratio
of the squares of the hopping parameters calculated in the downfolding procedure is equal to
6.25, confirming the strong anisotropy of the exchange couplings in CaV2O5. The rung and
leg hopping parameters for MgV2O5 are nearly equal, which again agrees with the LDA +U
estimate for the exchange couplings in MgV2O5.

The hopping integrals extracted from the effective four-band V–V model are consistent
with the exchange couplings calculated from the LDA +U method in the previous section. We
shall now employ the downfolding method to explore the reason for the exchange as well as
hopping integrals along the rung and leg for CaV2O5 being so different in comparison to those
for MgV2O5, although for both compounds the vanadium oxide planes have nearly the same
geometry.

It has been argued [20] that at least the rung-J2 and the leg-J3 exchange integrals are
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mediated by the super-exchange mechanism through the O 2p orbitals and that the size of this
exchange integral primarily depends on the hopping integraltpd for hops between thexy-orbital
of the vanadium and the p orbitals of the oxygen. According to the canonical band theory the
structural difference between the two compounds should account for the observed differences.
It should be noted that such super-exchange processes are explicitly taken into account in our
effective V–V model in the process of downfolding.

Moreover in contrast to the case for cuprates, where the effective hopping predominantly
originates from theσ -overlap of the Cu 3d orbitals with the oxygen 2p orbitals, for the vanadates
theπ -overlap with the oxygen orbitals and the direct V 3d–3d overlap could be of the same
order of magnitude.

The preceding discussion suggests that a model with an oxygen px orbital along the leg and
an oxygen py orbital along the rung in addition to the Vxy-orbitals should be a good starting
point for attempts to gain an understanding of these materials. Such a model Hamiltonian
with more orbitals is usually short ranged and will be referred to as a chemical Hamiltonian,
as it is expected to possess the necessary degrees of freedom to ensure that its tight-binding
parameters behave in a meaningful way when the structure is deformed and when we proceed
to study similar materials. Accordingly, we have extracted all the hoppings in a tight-binding
Hamiltonian where in the basis we have retained only oxygen px orbitals along the leg, oxygen
py orbitals along the rung, and all the Vxy orbitals. All other orbitals were downfolded.
Our calculation shows that the Vxy–Op hoppings (tpd) are consistent with the prediction of
the canonical band theory. In fact the ratiot rungpd for CaV2O5 to MgV2O5 is given as 1.21
according to canonical band theory while our downfolding method yields 1.11. Furthermore,
in this model the anisotropy between the rung and leg hopping is absent in CaV2O5. However,
for MgV2O5 the direct Vxy–Vxy hopping along the rung is found to be very small in comparison
to that for CaV2O5. This is not consistent with canonical band theory as the V–V distances in
CaV2O5 are smaller in comparison to MgV2O5 (see table 1). In order to overcome this problem
we tried to include more orbitals in the basis, as has been done for the high-Tc cuprates [21] and
the ladder cuprate SrCu2O3 [22]; however, the direct V–V as well as V–O hoppings remained
nearly the same as in the V–O model discussed above. The reason that a chemical Hamiltonian
could not be defined for the vanadates on the same footing as for the cuprates may be the
complicated geometry of the vanadates. As a consequence, the orbitals are deformed in the
process of downfolding, thereby ruling out the validity of the simple canonical band theory.

However, in this paper we have adopted the following strategy to overcome this problem.
Chemical intuition suggests that the anisotropy of the leg and the rung exchange interactions
in CaV2O5 and its absence in MgV2O5 may be attributed to the following: (a) the chemical
composition of the compounds—particularly the smaller ionic radii of Mg in comparison to
Ca; the (b) difference in crystal structure of these materials.

In order to explore these effects we have considered three different models for CaV2O5

and have calculated the exchange interactions by the LDA +U method, as explained earlier,
and all the hopping parameters for the effective four-band Vxy–Vxy model. In the first model,
referred to as model 1, Ca is replaced with Mg in CaV2O5, to examine whether the chemical
composition plays any role in determining the anisotropy of the exchange interactions as well as
hoppings in these materials. In order to explore the role of crystal structure we have considered
the following two models. Model 2 is the same as model 1 except that now the V–V and V–O
distances are changed so that they are equivalent to those in MgV2O5. Finally, in model 3 we
have not only changed the V–V and V–O distances but also the V–O–V angles are changed so
that they are the same as in MgV2O5. The results of our calculation for the exchange couplings
as well as hoppings for the effective V–V model are summarized in table 4.

From table 4 we reach the following conclusion. The calculation of the exchange coupling
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Table 4. Calculated exchange couplings (in K) and hopping parameters (in eV) for the models as
described in the text.

System J2 J3 t2 t3

Model 1 320 92 0.169 0.065
Model 2 466 57 0.199 0.045
Model 3 24 143 0.053 0.107

and the hopping parameters in model 1 suggests that the change in chemical composition,
i.e. replacing Ca with Mg, does not influence the leg and rung anisotropy as seen in CaV2O5.
Similarly, from model 2 we conclude that bond lengths do not play any role in determining
the observed anisotropy between the leg and rung exchange interactions as well as hoppings
in CaV2O5. However, calculations based on model 3 clearly show that as soon as the V–O–V
angles are changed the exchange couplings as well as the effective hopping parameters are
influenced appreciably. In this case, the rung exchange coupling and also the bare hopping
are even smaller in comparison to the case for the leg. We obviously recover the values
obtained for MgV2O5 as soon as the primitive orthorhombic stacking is changed to base-
centred orthorhombic stacking. These calculations suggest that the difference in tilting angle
of the VO5 pyramids is the cause for the strikingly different magnetic behaviour of the two
vanadates considered here.

5. Conclusions

We have used the LDA+U method to compute the exchange couplings in the layered vanadate
compounds CaV2O5 and MgV2O5. Our calculation shows that a strong anisotropy exists
between the rung and leg exchange couplings for CaV2O5, thus making it a system of weakly
coupled dimers along the rung with strong interaction inside the dimer, characterized by a
large spin gap. On the other hand, the rung and leg exchange couplings are found to be of
comparable strength for MgV2O5, making it a small-spin-gap system. We have applied the
recently developed third-generation LMTO downfolding method and subsequently Fourier
transformed the downfolded Hamiltonian to extract the tight-binding parameters for hopping
between effective Vxy–Vxy orbitals for CaV2O5 and MgV2O5, as well as for three different
model systems. We conclude that the strongertilting of the VO5 pyramids in the MgV2O5

crystal structure in comparison to CaV2O5 is the reason that the exchange interactions along
the rung and leg are nearly identical in MgV2O5 while they are anisotropic in CaV2O5, leading
to the strikingly different magnetic properties of these materials.
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